Phyto and endocannabinoids exert complex actions on calcium and zinc signaling in mouse cortical neurons.

Rate this post

Phyto and endocannabinoids exert complex actions on calcium and zinc signaling in mouse cortical neurons.

Biochem Pharmacol. 2018 Apr 06;:

Authors: Bouron A

Abstract
Live-cell imaging experiments were performed with the fluorescent Ca2+ and Zn2+ probes Fluo-4 and FluoZin-3 on cultured cortical neurons dissociated from embryonic mice to investigate the effects of the cannabinoids anandamide (AEA), cannabidiol (CBD), and N-arachidonoyl glycine (NAGly) on neuronal store-operated Ca2+ entry (SOCE). When tested individually AEA, CBD or NAGly inhibited SOCE. CBD and NAGly also released Ca2+ from the endoplasmic reticulum. Furthermore, NAGly mobilized Zn2+ from a store distinct from the endoplasmic reticulum and mitochondria, and up-regulated the thapsigargin-evoked Ca2+ release. All these effects developed in a cannabinoid receptor CB1/2 independent manner via an intracellular pathway sensitive to the GPR55 antagonist ML193. Evidence is presented that cannabinoids influence Ca2+ and Zn2+ signaling in central nervous system neurons. The lipid sensing receptor GPR55 seems to be a central actor governing these responses. In addition, the alteration of the cytosolic Zn2+ levels produced by NAGly provides support for the existence of a connection between endocannabinoids and Zn2+ signaling in the brain.

PMID: 29630867 [PubMed – as supplied by publisher]


Source: Estudios sobre Cannabidiol (CBD)

Deja un comentario

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

*

Translate »